If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-46x+35=0
a = 15; b = -46; c = +35;
Δ = b2-4ac
Δ = -462-4·15·35
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-4}{2*15}=\frac{42}{30} =1+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+4}{2*15}=\frac{50}{30} =1+2/3 $
| 3a+1=4a-5 | | 6x2-18x-12x=0 | | 2/3x-16=51 | | 4d=1/5 | | (6x+10)+(5x+28)=180 | | 4(5+x)=7 | | 5(6-3x)+18=-9x-3(4-2x) | | x*0.0000075=(x-120000)*0.000015 | | 6x+5+4x=5x-10 | | 5/2x-2=1/2x-1 | | 2x-3(4x-8)=2(5+x)-10 | | 10x-9-x=29 | | 120=-0.75y | | g(4)=31 | | 4z/9-2=-1 | | -2+6(x-3)=13x+6-7x | | (4x-6)=(8x-6) | | X^2-1=(x+1)(x-1 | | (9x+7)=(10x-10) | | 5/6+3j=3/5 | | 15x+5=2(7x+1)+7 | | y=77(14) | | 7x-18=5×6×= | | -2t+5=6t-1 | | X/5=3/35+((x+1)/7) | | (6x+26)=(6x+10) | | 3/2x^2=200-3x | | 2(k+1)(k+1/2)=0 | | 120=30x×2 | | K=4q | | (7x+4)=(8x+3) | | 25x+784=36x+817 |