If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-4x-2=0
a = 15; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·15·(-2)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{34}}{2*15}=\frac{4-2\sqrt{34}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{34}}{2*15}=\frac{4+2\sqrt{34}}{30} $
| -9x-13=-40 | | 40=2w | | -7x+5/7+9x-7/8=1 | | 4x+6=2+9 | | 15x+3=9x-4 | | 2a-3/3=7 | | 5-(-9x-4)=x+3-10(x+3) | | 1764=28d | | 3(x-1)=2x+8 | | x/5=80/25 | | 5-(9x-4)=x+3-10(x+3) | | −33=f/−3 | | -19x-13=-51 | | 6x+39=143-7x | | 28g=1768 | | 5c-8=64 | | 2/3x-4=1/3x+1 | | X-6=-5/x | | (5x+-4)(x+1)=1 | | 6x-14=-134 | | 2x^2+3=-25 | | 11.8x+0.2x+0.76=4.76 | | -64x2+176x-121=0 | | 2/x-4=1/3x+1 | | 3/4c+23=38 | | 6x+5-9(x+1)=4x+2 | | (7y+13)+8y=4/5(-10+15y) | | X2+16x-9=0 | | 3(x-5)+4x=9x+18 | | 1/4+z=1/3 | | 13m+3m=7m-36 | | 125=25^2x |