If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2+10y=0
a = 15; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·15·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*15}=\frac{-20}{30} =-2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*15}=\frac{0}{30} =0 $
| 4^x+3^x=6^x | | 1-3V=4w | | 13-c=20 | | 3w/3=-4 | | (3x²)+(3x)-(216)=0 | | 2(x+16)=6 | | 1000m+1200=1500m+1175 | | (x)³+217=(x+1)³ | | 3(x-1)-8=4(1+x)x5 | | 3+8-4=2r+3+6r | | 18=v/5+11 | | 40=1/2p+8 | | X^2+3|4+2x=15 | | 9=n+56 | | 0=3q-6 | | -13+8x3=-77 | | 30x^2-60x-1050=0 | | 7(n-8)-(-1-7n)=1 | | 34=2v+12 | | 40-x=4(-3-36x)+6 | | (64.9278)(x)+(62.9296)(1-x)=63.546 | | 180-37-x=180-(2x+12) | | 8(-5p-6.25)-7.5=157.5 | | 9x+7=47 | | 4x2+18x+27=0 | | 94.47=6.7(x+8) | | 4.75-0.75x=3.35-0.50x | | 2(-2+a)=-38 | | 4.75-0.75x=3.35-0.50 | | -5/2=(-1+b) | | |3x+1|=28 | | -20x2+20x-5=0 |