If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2+32y+16=0
a = 15; b = 32; c = +16;
Δ = b2-4ac
Δ = 322-4·15·16
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8}{2*15}=\frac{-40}{30} =-1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8}{2*15}=\frac{-24}{30} =-4/5 $
| x-42=98+9x | | 32b-20= | | 2/5c=3/6 | | -2m+7/8m=0 | | x+-5=12.4 | | 5^4x-2=16 | | t-12=7 | | 5.95+0.19m=15.83 | | x-9.1=5 | | 10y+20.3=20.3 | | -3f+1=-1-2f | | (4x)÷3=2(x-20)-10+10 | | 10y+29=2y-3 | | 4/x+3=6 | | 3(2x-3)+12=33 | | g-1=3g-6g-9 | | -10+5r=4r | | -v-8=2+v | | 2x=-5x+-10 | | 4/x+9=10 | | t2-5=-10 | | -v−8=2+v | | 6-2z=-4z+2 | | 2x=-5+-10 | | -4=-1+-v | | 10+3n=2n | | 15=1/6n-1/6n-1 | | 3500x^2-882.9x-1765.8=0 | | 7-(p+8)=-7p-6 | | -9-u=-10u | | 5x²+50x=-105 | | 5(x+8)−5=91−2x |