If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-14y-49=0
a = 15; b = -14; c = -49;
Δ = b2-4ac
Δ = -142-4·15·(-49)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-56}{2*15}=\frac{-42}{30} =-1+2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+56}{2*15}=\frac{70}{30} =2+1/3 $
| 9(y+1/3)+4y=0 | | |2n+8|-5=8 | | 8(x−9)−9(x−8)=x+8−(x−5) | | 9–y=-51 | | 15y2-14y`-49=0 | | 4(x-7)+7x=16 | | 4y^2-64y-256=512 | | 22;x+12=37 | | 5y+5=2y-9 | | 144x^2-2940x+5184=0 | | 5(d–67)=65 | | 5(y+1)=2y-9 | | X+6/7+x+2/2=4 | | 8y-2=12y+6 | | 12x^2-24x+48=0 | | q+2=2q-11 | | 9y+5=8y-4 | | -9y-18=-6(y+5) | | 13y^2-30y=0 | | 4+6(7-x)=4 | | 4x^2-25x+144=0 | | 0=4x(x^2-9) | | 3n+32=180 | | p-1/4=7/4 | | 5y–-62y–29y+-89=-13 | | 8x-90=-18 | | 77x+7x+3x–69x+5=77 | | 77u+7u+3u–69u+5=77 | | 2/9y=7/9 | | -2x+4=44 | | -5(y-9)=2y-4 | | 26x-x^2=144 |