If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16(4-3m)=96(-m2+1)
We move all terms to the left:
16(4-3m)-(96(-m2+1))=0
We add all the numbers together, and all the variables
-(96(-1m^2+1))+16(-3m+4)=0
We multiply parentheses
-(96(-1m^2+1))-48m+64=0
We calculate terms in parentheses: -(96(-1m^2+1)), so:We get rid of parentheses
96(-1m^2+1)
We multiply parentheses
-96m^2+96
Back to the equation:
-(-96m^2+96)
96m^2-48m-96+64=0
We add all the numbers together, and all the variables
96m^2-48m-32=0
a = 96; b = -48; c = -32;
Δ = b2-4ac
Δ = -482-4·96·(-32)
Δ = 14592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14592}=\sqrt{256*57}=\sqrt{256}*\sqrt{57}=16\sqrt{57}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-16\sqrt{57}}{2*96}=\frac{48-16\sqrt{57}}{192} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+16\sqrt{57}}{2*96}=\frac{48+16\sqrt{57}}{192} $
| −5x−32=4x+13 | | 13-(2y+2)=2(y+2)-21 | | 13-(2y+2)=2(2y | | -12+27=3(x+8) | | 5x+4=-5+2x+15 | | 3x=5x-6+4 | | -6=-y+-16 | | 3(7-3n)=-3(6n+8) | | x×3-9=54 | | 5x=3x+1-7 | | 4(3r+3)=84 | | 8x-43=2x-4+4x-1 | | 2x-10=14-3x | | -2/7y=4 | | 200=5(7x+5) | | 3n-2(-6n-5)=85 | | 126=6(3-3v) | | 5(w+6)=-6w+8 | | 3(n+11)-5n=-2(n-12)+19 | | -84=4(6n-3) | | 12-4=-n | | 6x+48=-6(x+4) | | -76=4(1+4m) | | -85=5(1-6b) | | 9(x-6)=5x-26 | | 63=3(6+5b) | | 7(x+6)=7x=9 | | 2m+22=60 | | 124=4(6v+1) | | 7u^2-21u=0 | | (3x-x^2+8)+(x^2+4x-5)=0 | | 2m-6=2m-8 |