If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16(4-3x)=96(-x2+1)
We move all terms to the left:
16(4-3x)-(96(-x2+1))=0
We add all the numbers together, and all the variables
-(96(-1x^2+1))+16(-3x+4)=0
We multiply parentheses
-(96(-1x^2+1))-48x+64=0
We calculate terms in parentheses: -(96(-1x^2+1)), so:We get rid of parentheses
96(-1x^2+1)
We multiply parentheses
-96x^2+96
Back to the equation:
-(-96x^2+96)
96x^2-48x-96+64=0
We add all the numbers together, and all the variables
96x^2-48x-32=0
a = 96; b = -48; c = -32;
Δ = b2-4ac
Δ = -482-4·96·(-32)
Δ = 14592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14592}=\sqrt{256*57}=\sqrt{256}*\sqrt{57}=16\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-16\sqrt{57}}{2*96}=\frac{48-16\sqrt{57}}{192} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+16\sqrt{57}}{2*96}=\frac{48+16\sqrt{57}}{192} $
| s/3-10=-9 | | 4q^2–12q+9=0 | | 600=x+7x | | 2b-54=-b+21 | | x+18^2+18^2+18^2+18^2+9^2=81^2 | | q/30+15=18 | | -7w+6w+5=-8 | | 50=h/10+47 | | u/2+-7=-6 | | x+18^2+18^2+18^2+9^2=81^2 | | 6x+-x+7=36 | | 3b-12=5 | | 4x-6+7x=-11x+3 | | 6q-4=32 | | 50=21+2w | | 2z-8=1 | | 3b-21=7 | | 10v+20=3 | | 10+18x=90 | | ⅘x-1/10=3/10 | | 42+10x=90 | | x²-6=30 | | |3y-11|=|19-3y| | | X-20+2x+20=180 | | 3y-15=4 | | k/3+8=9 | | 1/2(x+2)+3x=-1 | | .2(x3)2(x4)=24 | | f/10+8=10 | | x+308=4708 | | 4q2–12q+9=0 | | 4x-22+2x+38=180 |