If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16-(1/8)t=0
Domain of the equation: 8)t!=0We add all the numbers together, and all the variables
t!=0/1
t!=0
t∈R
-(+1/8)t+16=0
We multiply parentheses
-t^2+16=0
We add all the numbers together, and all the variables
-1t^2+16=0
a = -1; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-1)·16
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*-1}=\frac{-8}{-2} =+4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*-1}=\frac{8}{-2} =-4 $
| 6-10x+4x=-4-4(2-x) | | 3(7z+4)=74 | | 2(4-2p)=16 | | 0=12(x+1)+6x-48 | | 3x-10=-20-2x | | 2(4p-5)=14 | | 3x+2=-5+4x | | 6x+12=-118+7x | | 2m-5m=-15- | | 15x2-26x+8=0 | | 3c-3=4717839178748278941904858424735897819017894190485842473589781901789419048584247358978190178941904858424735897819017894190485842473589781901789419048584247358978190178941904858424735897819017894190485842473589781901789419048584247358978190178941904858 | | 9m-14=49m= | | 3c-3=471783917874827894190485 | | 3c-3=4717 | | 0,3=30/x | | 3x-4262=4924 | | 6y-14=49y= | | x/39=12 | | 5x2+13x–28=0 | | 0.5x-0.2=-0.3x+1.8 | | -3-4x=2-12x | | 3+1x=17 | | 4c+8-2c= | | 5x-2=19-3x | | 11b-3b= | | 26^x-9=2^4x+8 | | 1+5x=4-x | | 5+1½x=3½x–3 x= | | X=1/2x(16-8Y) | | 2k+1=k+6 | | 7b-2b+b=6b | | 33+x=74 |