If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16-1/2(2x)=8-1/2(x)
We move all terms to the left:
16-1/2(2x)-(8-1/2(x))=0
Domain of the equation: 22x!=0
x!=0/22
x!=0
x∈R
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-1/22x-(-1/2x+8)+16=0
We get rid of parentheses
-1/22x+1/2x-8+16=0
We calculate fractions
(-2x)/44x^2+22x/44x^2-8+16=0
We add all the numbers together, and all the variables
(-2x)/44x^2+22x/44x^2+8=0
We multiply all the terms by the denominator
(-2x)+22x+8*44x^2=0
We add all the numbers together, and all the variables
22x+(-2x)+8*44x^2=0
Wy multiply elements
352x^2+22x+(-2x)=0
We get rid of parentheses
352x^2+22x-2x=0
We add all the numbers together, and all the variables
352x^2+20x=0
a = 352; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·352·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*352}=\frac{-40}{704} =-5/88 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*352}=\frac{0}{704} =0 $
| 4*3r+4)=-8(2r+5) | | y+4(3)=9 | | 6.78j-52=4.33j+2.15 | | 2x^2-7x-2.5=0 | | 220=4w+30 | | 9+17m-4=8m+140-6m | | (x/4)+(x/3)=(7/12) | | 7(4b+6)=-98 | | 8.95x-2=23.65 | | -2+-2w=6+5w | | 1/3x+20=11 | | 5(r+9)+4(1-r)=1 | | -2t+4+-7=9 | | x+6/12=3/4*x | | 8p+8=12+6p | | x(3x+8)/(3x-8)=0 | | 4.9t^2-19t-70=0 | | 5y+10y=15 | | n2+13=75 | | 39.95x0.99=55.79 | | 8.6x=0.5 | | -2/5x+1=7 | | c+1/3=21 | | x^2+12x-112=0 | | 12w+11=4 | | 3r+4+4=-10-3r | | h=22-h=0 | | -18-14v=-2(v+4) | | 3x-12/5=9 | | v-2=4v+13 | | 5n+4n=0 | | 1/5x=212 |