16-1/2x=3/4x=1

Simple and best practice solution for 16-1/2x=3/4x=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16-1/2x=3/4x=1 equation:



16-1/2x=3/4x=1
We move all terms to the left:
16-1/2x-(3/4x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-1/2x-(+3/4x)+16=0
We get rid of parentheses
-1/2x-3/4x+16=0
We calculate fractions
(-4x)/8x^2+(-6x)/8x^2+16=0
We multiply all the terms by the denominator
(-4x)+(-6x)+16*8x^2=0
Wy multiply elements
128x^2+(-4x)+(-6x)=0
We get rid of parentheses
128x^2-4x-6x=0
We add all the numbers together, and all the variables
128x^2-10x=0
a = 128; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·128·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*128}=\frac{0}{256} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*128}=\frac{20}{256} =5/64 $

See similar equations:

| 3x+10=12x-8 | | 9x+4=7x-8x+6 | | 2(4+9x)=44 | | -16x^2+64+0=0 | | 25x+50(10-x)=40 | | 2(x-3)+12=120 | | -15=-6+3/4y | | 3(x-3)-(x-5)=12 | | -6+5(1-4d)=22 | | 201/4+1/2x=26.25 | | -(-1-2k)+k=9-k | | 106.2=9(m+3.7) | | X+2=36-12x | | 4x+240=0 | | c/10+42=44 | | 3(x-9)-(x-5)=12 | | 7/11x+1/2=4/9-4/11x+4/9 | | j+40/9=0 | | -2=-n+2n | | -0.4s=-2 | | 6(2x+8=108 | | 48+x=8 | | 91=9b+1 | | 5(x+5)+5=190 | | 3x+6=8+1x | | 121-8x=81 | | 2.4q-3.5-4.9q=-1.5q-3.5 | | 5*x+6=41 | | 2=z+5/10 | | 3(3+6x)-3=144 | | 2(20x+30)=420 | | 48x=8 |

Equations solver categories