16-3p=2/3p*5

Simple and best practice solution for 16-3p=2/3p*5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16-3p=2/3p*5 equation:



16-3p=2/3p*5
We move all terms to the left:
16-3p-(2/3p*5)=0
Domain of the equation: 3p*5)!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
-3p-(+2/3p*5)+16=0
We get rid of parentheses
-3p-2/3p*5+16=0
We multiply all the terms by the denominator
-3p*3p*5+16*3p*5-2=0
Wy multiply elements
-45p^2*5+240p*5-2=0
Wy multiply elements
-225p^2+1200p-2=0
a = -225; b = 1200; c = -2;
Δ = b2-4ac
Δ = 12002-4·(-225)·(-2)
Δ = 1438200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1438200}=\sqrt{900*1598}=\sqrt{900}*\sqrt{1598}=30\sqrt{1598}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1200)-30\sqrt{1598}}{2*-225}=\frac{-1200-30\sqrt{1598}}{-450} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1200)+30\sqrt{1598}}{2*-225}=\frac{-1200+30\sqrt{1598}}{-450} $

See similar equations:

| -5x-5+3x=7+4x-9 | | x+−15=23 | | 9+40m=9-7m | | -5y+7(y+2)=6 | | 4(3x-2)=6(2x-3) | | 6x-3+5=2x=18-12+8x | | 3c-6=4 | | 250+25x=-50 | | 7w−3(5+w)=10w+3 | | .9m=75+.7m | | 5(2x+4+6=4(3x+1)-6 | | s+4/3=4 | | -4+6x=-x+24 | | -8x+5(x+3)=18 | | 3b=-9.5 | | 2(300x-900)=3 | | 2x-8(x-8)=112 | | 2x-1=5x-3x-8 | | -10x-34=-12x+28 | | 3x(18–3)+(6+4)÷2=50 | | 6.3+y=-14.5 | | 8-14p=22+20p | | 5x+8=-7x+38 | | 30=-35x+30 | | 3c−2=c+22 | | 3.75a=2.625 | | 2x+7=4•7 | | 9(x-3)=2x-16 | | H+5n+7=43 | | 72=d+4 | | 10-2v=10-50 | | -5=5x+11 |

Equations solver categories