16-3p=2/3p+3p

Simple and best practice solution for 16-3p=2/3p+3p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16-3p=2/3p+3p equation:



16-3p=2/3p+3p
We move all terms to the left:
16-3p-(2/3p+3p)=0
Domain of the equation: 3p+3p)!=0
p∈R
We add all the numbers together, and all the variables
-3p-(+3p+2/3p)+16=0
We get rid of parentheses
-3p-3p-2/3p+16=0
We multiply all the terms by the denominator
-3p*3p-3p*3p+16*3p-2=0
Wy multiply elements
-9p^2-9p^2+48p-2=0
We add all the numbers together, and all the variables
-18p^2+48p-2=0
a = -18; b = 48; c = -2;
Δ = b2-4ac
Δ = 482-4·(-18)·(-2)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{15}}{2*-18}=\frac{-48-12\sqrt{15}}{-36} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{15}}{2*-18}=\frac{-48+12\sqrt{15}}{-36} $

See similar equations:

| 1/2(2y+4)=-10 | | X+8=9x-7 | | 5d−2d=9 | | 5y-3+5y-3=180 | | 2x-18+x+18=90 | | -3(-3x+6)=-81 | | -26+5x=6(-8-7x) | | 4n-6n+3-(-9)=-5 | | -28=n-5 | | 7.4=9.8-0.3x | | 10+3x=25x | | -6(x-7)+4=88 | | 13y+24=89 | | 3(x-1)-8=4(1+4x)+5 | | X²-10x=1200 | | X4+15x2=16 | | 11x+34+15x+18=180 | | -12x-3=84 | | -4(2r+-5)=-41 | | 12+2(x-4)=7x+5(1-x) | | 88=-5-3(-6r-7) | | 22=20d+8 | | 3/2y-4/3=4/5 | | -83=5-2(8+6v) | | 10x-15+10x-15=180 | | 6(4+2b)+7b=157 | | 16+11+2x+x=32 | | x=24+0.6x | | (5x-20)+x=90 | | 3x+5x=14x-36 | | 43x+25(467-x)=15068 | | 10111.99=7750(1+x)^9 |

Equations solver categories