16/3x=16+14/x+16

Simple and best practice solution for 16/3x=16+14/x+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16/3x=16+14/x+16 equation:



16/3x=16+14/x+16
We move all terms to the left:
16/3x-(16+14/x+16)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x+16)!=0
x∈R
We add all the numbers together, and all the variables
16/3x-(14/x+32)=0
We get rid of parentheses
16/3x-14/x-32=0
We calculate fractions
16x/3x^2+(-42x)/3x^2-32=0
We multiply all the terms by the denominator
16x+(-42x)-32*3x^2=0
Wy multiply elements
-96x^2+16x+(-42x)=0
We get rid of parentheses
-96x^2+16x-42x=0
We add all the numbers together, and all the variables
-96x^2-26x=0
a = -96; b = -26; c = 0;
Δ = b2-4ac
Δ = -262-4·(-96)·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-26}{2*-96}=\frac{0}{-192} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+26}{2*-96}=\frac{52}{-192} =-13/48 $

See similar equations:

| 5/2n-1/4=1/2 | | −6(1−m)=9−2m | | 9n+5=7 | | 4/x+1/x^2+2x=3/x+2 | | 3(5x+4)+5x=−8 | | 12-3q=27 | | 8v=v+24 | | 2x1/2=10x-3.5 | | 2x15=x+30 | | 5(x+2)–7(x-2)=256 | | 1/2p^2+p^2+p-2/4p^2=1/p | | a÷4+2=14a= | | k(k+1)-66.6=0 | | Y=0.25x+4.7 | | 3*x-2=5*x | | X,2+y,7=-1 | | 2x=7=-113-10x | | X,6+y,3=2 | | x(x+10)=2(5x-2) | | x/0,5=5/(3/4) | | x/0,5=5/3/4 | | 2+6x=-18=x | | 480x-40x^2=0 | | 5x-6=7x+11 | | -40x^2+480x=0 | | -4(8-x)=6 | | h6/5=2. | | x/30=160/100 | | 4+5x+2=3 | | 3x-10+6x-10=90 | | 3x-10+6x-10=890 | | 3x-10+6x-10=180 |

Equations solver categories