If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16/x+8/(x-2)=2
We move all terms to the left:
16/x+8/(x-2)-(2)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: (x-2)!=0We calculate fractions
We move all terms containing x to the left, all other terms to the right
x!=2
x∈R
(16x-32)/(x^2-2x)+8x/(x^2-2x)-2=0
We multiply all the terms by the denominator
(16x-32)+8x-2*(x^2-2x)=0
We add all the numbers together, and all the variables
8x+(16x-32)-2*(x^2-2x)=0
We multiply parentheses
-2x^2+8x+(16x-32)+4x=0
We get rid of parentheses
-2x^2+8x+16x+4x-32=0
We add all the numbers together, and all the variables
-2x^2+28x-32=0
a = -2; b = 28; c = -32;
Δ = b2-4ac
Δ = 282-4·(-2)·(-32)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{33}}{2*-2}=\frac{-28-4\sqrt{33}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{33}}{2*-2}=\frac{-28+4\sqrt{33}}{-4} $
| 3x^2+6x-1080=0 | | -1=6+x/7 | | 3=q+23 | | 4(7+m)=16 | | 16-2x=5x=+9 | | 10+2.50x=3x | | 9=a÷8 | | 17/3(x-3/3)=-5/4 | | 3.6+10m=8.24 | | 36x-2x^2=32 | | -18p+-3p+14p+-4=-11 | | 9-3y=-4y | | 7x+5=9x+8 | | 27^x+27^x=32 | | 3^3^x+3^3^x=32 | | m/4+9=21 | | 18-6=2(4k-6)+8 | | 5t=-4+6t | | 10q+3q+5=2q(q-3) | | m-3=-20 | | -5u−-13u+-12u+-10=-18 | | 4^(x^2-1)-2=0 | | 5(-7+4x)=25 | | s/9=9 | | 2(r-6)-5=-1 | | S^2-11s+36=s | | 1+1+1/6x=13 | | c=1000 | | (3x+8)–(2x+7)x=3 | | 0.2x+0.7x=7 | | -3h=-4h-6 | | 3t-2t+3=9 |