160=c2

Simple and best practice solution for 160=c2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 160=c2 equation:



160=c2
We move all terms to the left:
160-(c2)=0
We add all the numbers together, and all the variables
-1c^2+160=0
a = -1; b = 0; c = +160;
Δ = b2-4ac
Δ = 02-4·(-1)·160
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*-1}=\frac{0-8\sqrt{10}}{-2} =-\frac{8\sqrt{10}}{-2} =-\frac{4\sqrt{10}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*-1}=\frac{0+8\sqrt{10}}{-2} =\frac{8\sqrt{10}}{-2} =\frac{4\sqrt{10}}{-1} $

See similar equations:

| 3/3x=3 | | 3s=777 | | -22=6+c | | 3m+3=5m+15 | | x+6=7x+30 | | 125=(1/25)^x | | -1-6n=83 | | 3x+6-22=x | | (2x/5)^-x=(x/15)^-(4/3)^ | | 30=–5x+18 | | m​ +9=11 | | 3(2x-5)+9x=12 | | 5(5x-2)=2(9x+3) | | 7x+15=1520 | | 400=0.1^+3t | | z/10=31 | | 7=n-10 | | 10=5m/4. | | -36-5p=3(7-8p) | | 26+–8h=–30 | | 161+50+x=180 | | F(c)=-8-9; | | v/18=8 | | 3x+4x+4=32 | | 8x+(x+5)=x+5 | | $10=5m/4. | | –4d–13=23 | | 51+74+x=180 | | 5y-15=5(y-2 | | 15=9−2y | | w/7=26 | | Y=4x+1.2 |

Equations solver categories