165-8x+x2+16x=180

Simple and best practice solution for 165-8x+x2+16x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 165-8x+x2+16x=180 equation:



165-8x+x2+16x=180
We move all terms to the left:
165-8x+x2+16x-(180)=0
We add all the numbers together, and all the variables
x^2+8x-15=0
a = 1; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·1·(-15)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*1}=\frac{-8-2\sqrt{31}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*1}=\frac{-8+2\sqrt{31}}{2} $

See similar equations:

| 5x+3x-12=4x+6-4 | | -6x+-60=-18 | | 14=24-5t | | X-4=-9x | | 22-3u=10 | | 4x+4x-1=15 | | 7m=-68 | | 2x+-5=29x+-788 | | 60=-4(1-4x) | | 110+8x+30=18” | | 5x-4=4x+2-2x-9 | | 5x²+57x-36=0 | | 2x+2-x+3=4 | | -1/3x=-1/4x-10 | | 60=6(m+2) | | x2+17x=-60 | | 5x2-10x+1=0 | | 105=w+63 | | 2x^2-12x=19=73 | | -13x=−14x-10 | | 3x33x​ x​ =4.5=34.5​ =1.5​ | | C=165-8x+x^2 | | v4+ 8=11 | | 3x+2x=7x-10 | | 105=w=63 | | -4(-2x+8)=-6(x-10)+12x | | 4(2x+1)=6x-12 | | 105=w+6 | | 3x-7=-2+9 | | X-3x+20=4x+6x+9 | | 90=5(z+9) | | -14+6b-2b=1+5b |

Equations solver categories