16500=x(26-0.01x)

Simple and best practice solution for 16500=x(26-0.01x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16500=x(26-0.01x) equation:



16500=x(26-0.01x)
We move all terms to the left:
16500-(x(26-0.01x))=0
We add all the numbers together, and all the variables
-(x(-0.01x+26))+16500=0
We calculate terms in parentheses: -(x(-0.01x+26)), so:
x(-0.01x+26)
We multiply parentheses
0x^2+26x
We add all the numbers together, and all the variables
x^2+26x
Back to the equation:
-(x^2+26x)
We get rid of parentheses
-x^2-26x+16500=0
We add all the numbers together, and all the variables
-1x^2-26x+16500=0
a = -1; b = -26; c = +16500;
Δ = b2-4ac
Δ = -262-4·(-1)·16500
Δ = 66676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{66676}=\sqrt{4*16669}=\sqrt{4}*\sqrt{16669}=2\sqrt{16669}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{16669}}{2*-1}=\frac{26-2\sqrt{16669}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{16669}}{2*-1}=\frac{26+2\sqrt{16669}}{-2} $

See similar equations:

| 2b-2b+3b+4b=14 | | 7y/y7=1/3 | | q•2=4 | | 3+2×6=z+5 | | C=535+450n | | 1.07*x=150 | | 0.03(x-12)+0.06x=1.52 | | -27.11=-9.8^x | | 7/y+y/7=1/3 | | q•2=8 | | q•4=8 | | 3m—4=2 | | 5x+1/36=11x-5/63 | | x+78+92=180 | | 7r+4r-8r+2r=20 | | 70-4x=100-16x | | 14x+×=30000 | | x^2+19=-30 | | -0.5(x+2)2=0 | | T(x)=9x+10 | | 10x+15x-8+3=-3x+3-8 | | 40=j+7j | | 1/7(7y+14)-7=-1/2(4y-8) | | -2x=3=-5 | | 9q/q^2=2 | | 16y-14y+y-3y+y=12 | | 24=3(n+) | | 20=3u+2u | | -0.5(x+2)^2=0 | | X=1.25y+10 | | 3/5y=1/2 | | 0.8x+1/5=0.6-10 |

Equations solver categories