167/15y+7+15y+6=180

Simple and best practice solution for 167/15y+7+15y+6=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 167/15y+7+15y+6=180 equation:



167/15y+7+15y+6=180
We move all terms to the left:
167/15y+7+15y+6-(180)=0
Domain of the equation: 15y!=0
y!=0/15
y!=0
y∈R
We add all the numbers together, and all the variables
15y+167/15y-167=0
We multiply all the terms by the denominator
15y*15y-167*15y+167=0
Wy multiply elements
225y^2-2505y+167=0
a = 225; b = -2505; c = +167;
Δ = b2-4ac
Δ = -25052-4·225·167
Δ = 6124725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6124725}=\sqrt{225*27221}=\sqrt{225}*\sqrt{27221}=15\sqrt{27221}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2505)-15\sqrt{27221}}{2*225}=\frac{2505-15\sqrt{27221}}{450} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2505)+15\sqrt{27221}}{2*225}=\frac{2505+15\sqrt{27221}}{450} $

See similar equations:

| 42=-2(3y+4) | | −54=6(18−3x) | | 3·(4x-3)=5·(5-x) | | 17/11=v/5 | | 8+2x+3-x=2x1 | | 6+3x=15 | | 9r-13=14 | | m∠A=7(14)+10 | | h+19=25 | | -7X42x= | | 3x+30+2x−=20 | | 32f+8=328 | | |w-2|=2 | | 4-6y=8y= | | -6m^2=-384 | | -4+7y=19 | | 3x+7=47, | | 5y-12=8y+3 | | 5x+12+3=36 | | 11⁢x+7=8 | | F(x)=(x-8/2) | | -4n^2=-400 | | y=7+6 | | 3(2x+1)=5(x–4)* | | x=-48x+4x-5= | | 6^x+3=36 | | C=240*2y | | 1/2x7/6=5 | | `2.5x+3.5=-3x` | | 1+6n=73 | | 7+–3j=10 | | 9x^2-8=53 |

Equations solver categories