168-(19-2x)(12-2x)=1380/20

Simple and best practice solution for 168-(19-2x)(12-2x)=1380/20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 168-(19-2x)(12-2x)=1380/20 equation:



168-(19-2x)(12-2x)=1380/20
We move all terms to the left:
168-(19-2x)(12-2x)-(1380/20)=0
We add all the numbers together, and all the variables
-(-2x+19)(-2x+12)+168-69=0
We add all the numbers together, and all the variables
-(-2x+19)(-2x+12)+99=0
We multiply parentheses ..
-(+4x^2-24x-38x+228)+99=0
We get rid of parentheses
-4x^2+24x+38x-228+99=0
We add all the numbers together, and all the variables
-4x^2+62x-129=0
a = -4; b = 62; c = -129;
Δ = b2-4ac
Δ = 622-4·(-4)·(-129)
Δ = 1780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1780}=\sqrt{4*445}=\sqrt{4}*\sqrt{445}=2\sqrt{445}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{445}}{2*-4}=\frac{-62-2\sqrt{445}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{445}}{2*-4}=\frac{-62+2\sqrt{445}}{-8} $

See similar equations:

| 8.3(x-6)+2=4(x+2)-21x= | | 67x=12 | | 7.7(5x-2)=6(6x-1)x= | | 3c66=22 | | 3(y-10)=0 | | (4x-8)+(9x-8)+(9x-8)=56 | | 3b+22=5b-12 | | x2+6x+45=0 | | 41.71=9g+3.82 | | 1+1/2(y−2)=3/2 | | 6.5(x+4)=7(x-2)x= | | 2y-3(2y-4)+2=31 | | 2(x+1)=-3(-x+2) | | 7a-3=-94 | | 5.9(x+2)=3(x-2)x= | | 4.6x-8+2x-5=7-2xx= | | 3.5x+2=x-6x= | | 7x-5(3x-15)=19 | | 2.5x+3=2x+15x= | | 3x+4x-6=15 | | 3(y+2)=2(2y-7)+y | | 8x-1=-4x+23x= | | 8n+12-5=21 | | 3-3=1-r | | 3+3=1+-r | | x+x+55=90 | | (8x+16)=(5x+40) | | 4/5x-3=2(5+1/3x) | | 6-4d=9-13d | | 0.03x2=0 | | -13.1=y/6+6.1 | | 13x2+1.69=0 |

Equations solver categories