16=-x(90-x)

Simple and best practice solution for 16=-x(90-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=-x(90-x) equation:



16=-x(90-x)
We move all terms to the left:
16-(-x(90-x))=0
We add all the numbers together, and all the variables
-(-x(-1x+90))+16=0
We calculate terms in parentheses: -(-x(-1x+90)), so:
-x(-1x+90)
We multiply parentheses
1x^2-90x
We add all the numbers together, and all the variables
x^2-90x
Back to the equation:
-(x^2-90x)
We get rid of parentheses
-x^2+90x+16=0
We add all the numbers together, and all the variables
-1x^2+90x+16=0
a = -1; b = 90; c = +16;
Δ = b2-4ac
Δ = 902-4·(-1)·16
Δ = 8164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8164}=\sqrt{4*2041}=\sqrt{4}*\sqrt{2041}=2\sqrt{2041}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{2041}}{2*-1}=\frac{-90-2\sqrt{2041}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{2041}}{2*-1}=\frac{-90+2\sqrt{2041}}{-2} $

See similar equations:

| 35+4x=61+2x | | 5-3(x+3)=-14 | | 90=(90-x)-x+74 | | -222=-16t^2+180t+5 | | 55*x=55.2 | | 222=-16t^2+180t+5 | | 222=-16t^2+180t | | 5x=34=-2= | | 1+a^2-(2a^2+12)1+(7a/10)=7 | | 24x=3.12 | | 1/3(6x-5)-x=1/3-2x | | -10=-8+b/7 | | F(-x)=3x^2+2x-3 | | 2x+8=-16-2x)-2x | | -8=-10+m/5 | | F(x)=9x2+1 | | 17-3x=-17 | | 5x=+4x-6+5x | | 2x-5(x-5=-4+5x-3 | | v^2/120=25 | | 0.08=(0.15)^x | | n+16=4n-2+2n+3 | | 34-(3c+4)=2(c+6)+5 | | (3x+3)+(2x+52)+(180-8x+7)=180 | | 11x-5+140=11x+75 | | 4(21/8+30)=3(51/3x) | | 125m-75m+42,975=45,000-175m | | 9u+32=15(u-4)-3(2u+21) | | 2(x+3)+5=-1 | | 15x^2+45/50x=0 | | 77.35=5/9(f-32)+273.15 | | 6.1g+8=2.1g+20 |

Equations solver categories