If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16g(g+12)=528
We move all terms to the left:
16g(g+12)-(528)=0
We multiply parentheses
16g^2+192g-528=0
a = 16; b = 192; c = -528;
Δ = b2-4ac
Δ = 1922-4·16·(-528)
Δ = 70656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{70656}=\sqrt{1024*69}=\sqrt{1024}*\sqrt{69}=32\sqrt{69}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(192)-32\sqrt{69}}{2*16}=\frac{-192-32\sqrt{69}}{32} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(192)+32\sqrt{69}}{2*16}=\frac{-192+32\sqrt{69}}{32} $
| 6a+2a=90 | | −12s−48=−12s−48= −48−48 | | 36=4+y+1 | | 32w+10w-40w+10w=12 | | 114=3x+45 | | 2p+193.99=284.97 | | 30h+48=978 | | 1/2x-7=1/3(x-13) | | 3u-3u+5u=15 | | 2.4x+1700=1350+1.6x | | 2j+5j-3j-j=15 | | 7=a11 | | y+23.076=30.5 | | 12n+n-2n-7n=16 | | 3n=0.45n= | | r−3.4=13.1 | | 9p-5p-3p=5 | | −3m=120 | | 2(3n-2)-6=3(n+5)-1 | | 16y=992 | | −3m=120. | | 16y=991 | | 64⋅n=32. | | 10=f/6-12 | | 2x+5=2x=3 | | Y=5(1.09)^x | | 7g+19=96 | | 8d+15=4d-17 | | a^2=100/361 | | t/4-15=-12 | | 8p-8p+3p=6 | | 1,440h=103,680 |