If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16k^2-64=0
a = 16; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·16·(-64)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*16}=\frac{-64}{32} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*16}=\frac{64}{32} =2 $
| -3(-5z-2z)=7z | | 5/x-4=5/x+5 | | m+257=188 | | 1/2+3-1-x=6x=5+3 | | 15y=14y+15 | | 14=(2x-4)/(-3) | | n(n+1)=840 | | 8x=6x-22 | | 207=m-789 | | 4~=w-6~ | | -3(5z-2z)=7z | | 6=2(x-3)-8x | | 7^2x=7^18.4 | | 17c-18=18+15c | | 1-4p-3=18 | | 23-1+45x=135 | | 16m=368 | | 4=w-6~~ | | 10-6v-8v=-9v-10 | | Y-50=3(x-30) | | 8y-36=6(y-7) | | (2x-2)^2=30 | | T^2=20+2t | | m/36=28 | | 2x^-x+3=0 | | -8y+4(y+8)=24 | | 372=m-149 | | 8y-36=6(y-6) | | -8y+4(y+3)=24 | | T-2/3-t+7/5=t-4/10+2 | | 2x/5=6/4+8x/6 | | x-12=18+2 |