If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16p^2+3p=0
a = 16; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·16·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*16}=\frac{-6}{32} =-3/16 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*16}=\frac{0}{32} =0 $
| -2(r+8)=-31 | | (k+8)/3=-2 | | 3(3.1x-4.2)=6.2x+3.2 | | 48-(3c+4)=4(c+6)+c | | 45z+20=13.4 | | 7x-27+4x=12 | | 9(z-3)=72 | | -1.1+y/8=-13.9 | | n+750=16n-14 | | 4(x-2)/2=2(x+5)/8 | | 3+48-10+r=36 | | 4n=2~12 | | (5y+1)=(3y-7)=90 | | 1/p-4=7 | | -29=5(2a-1)=2a | | x(-15)=11 | | n+750-7=16n-7 | | 5x-3+7x=7x+5-9x | | 5/7+7m/2=73/14 | | 51/6(n-4)+51/6n=442 | | 8b-3=85 | | 12y-18=-5y+36 | | 2.5x-8=5x+ | | 3.4z=0.3z+3.565 | | n+750=16n-7 | | 3x-6=-3(2-x) | | 2n,n=6 | | 5z+34=-2(1-7) | | 18=3b-3 | | 18j-24=12 | | X*3x=50 | | 37-3n=2n=17 |