If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-100t+15=0
a = 16; b = -100; c = +15;
Δ = b2-4ac
Δ = -1002-4·16·15
Δ = 9040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9040}=\sqrt{16*565}=\sqrt{16}*\sqrt{565}=4\sqrt{565}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-4\sqrt{565}}{2*16}=\frac{100-4\sqrt{565}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+4\sqrt{565}}{2*16}=\frac{100+4\sqrt{565}}{32} $
| 23h−13h+11=8 | | 8n+3=15*n | | -19=-7x+44 | | 4(2x+1)=3(x-1)+8 | | 93/4=r-62/9 | | x/6-1/3-1/4·x-13/8=(x+14)/2-11/5 | | (7-2k)/(2-k)=12/5 | | e+3/2=4 | | 50n^2=-100n+50 | | 61-6x=14-10x | | 2(y-2)/4+7=14 | | x(x-7)(x+3)=0 | | 4,3x+5=x+10,5 | | 3z/8-3=-5 | | n^2+n-204=0 | | 33=(x+2)-3 | | 3(4x–1)+5=5x+2(10–x) | | Y2+5y=-3 | | 2(x-2)^2=32 | | (t+5)+4t=1 | | t÷3-1=15 | | 20+5x=-10 | | a÷5+4=14 | | 4b^2-6b=54 | | 1/3x+2/3=1/4x+3/4 | | (5^x-17)/3=36 | | (3w-3)/4=w/2 | | X^3-2x^2-2x=0 | | (a-3)/5=17 | | m/2+3=16 | | 0.5x2-0.5x-1=0 | | (z+6)^2=-10 |