If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-40t+25=0
a = 16; b = -40; c = +25;
Δ = b2-4ac
Δ = -402-4·16·25
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$t=\frac{-b}{2a}=\frac{40}{32}=1+1/4$
| 4+2x+4x=10 | | 6+8x-3x=61 | | 19^3-12x^2+16x=0 | | -7x+2)-3)=4 | | 18x-5=6x-(x+2)+(x+2) | | 2(x-5)=5(2x+1)+1 | | -14=3y+7 | | 12{3+a}=48 | | 3=9–3f | | b^2=41 | | 5/6x+9=4 | | 38-7x=-4(8x+3) | | 22=8u+6(u+2) | | 4x+8=6(x-1)-2x | | 8.8+z=19.4 | | Y=1/3x-19 | | u-3+ -4= -2 | | 24-8a=-8(a-2) | | 8+2x-1=128x-3 | | 2/5(3-m)-1/2(4-3m)=1/10(6m+17) | | -6+-2w=-10 | | 2(x^2-3x+4)+6x=8 | | x*(5/4)=6 | | 253x=125x-1 | | -1/8x=18. | | -19=x/18 | | x(3x+2)-3(x^2+x+5)=0 | | 10x+1=1002 | | 28+x=(30+x)0.95 | | (7x6)=3 | | 2r-7=20-7r | | 9x+5=27x-3 |