If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-96t+80=0
a = 16; b = -96; c = +80;
Δ = b2-4ac
Δ = -962-4·16·80
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-64}{2*16}=\frac{32}{32} =1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+64}{2*16}=\frac{160}{32} =5 $
| -2(3x-5)=-4x-6 | | x−5=4 | | 2x=3x=45 | | 7x+14/8=28 | | -m-m=-4 | | 5(3x+1)=-10 | | -3x/2+1=16 | | 6−13(x+4)=11 | | x-0.17x=80 | | 6(y+8)=60 | | 5x-2x+3=24+7x-9 | | 18⋅2^5t=261 | | 18⋅25t=261 | | 600000+0.04x=0.07x | | x-5/9=8 | | 0.08(y-8)+0.04y=0.02y-0.6 | | x/2+11=4 | | x+2/21=1 | | -4(3-2x=-44 | | 4(3r-2)=13r+8 | | -x-3=13 | | 3k+4(k-4)=-44 | | 34+x+16=90 | | 0.50x+0.25(50)=36.50 | | -4(4x-3)=76 | | 728-2x+x²=0 | | 25=x/13+12 | | 3r-r=-6 | | 2w+2/3(6w-12)=4 | | -59(p+3/5)=-4 | | 11x-2=-46 | | 3d+26=6d |