If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-9=0
a = 16; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·16·(-9)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*16}=\frac{-24}{32} =-3/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*16}=\frac{24}{32} =3/4 $
| (m/3)*(4+1)=15 | | 2x^2+29x-102=0 | | s-9=-2s | | 12y=(4y-2) | | (x+9)(x+9)=169 | | w^2*2w-162=0 | | 2/3x+16=39 | | 2/3x-16=16 | | 9/5c+32=c | | 37=6n+5 | | 14–3g=32 | | 10-7t=-5t-8 | | -8.8x=-1.56 | | 5x+7(1x-21)=-39 | | (y-2)^2=3y+4 | | 2h=134+8h-363 | | 10−7t=-5t−8 | | 6×y+-y=85 | | 9.5a+3.59=-39.17 | | 0=16t^2-48t-18 | | t-5+12=9 | | 5x+5(-5-9)=75 | | 3x+2+(4x+1-9x)=6x-13 | | 16-15q=20-15q | | 3n+6/2=30 | | 16−15q=20−15q | | 6/7/20=9.9/x | | -j+18=-18-4j-18 | | -10=6n+2 | | 20+3x-15+x=22 | | 9+-10y=6-2y | | 2x-4=x+4/5 |