If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2=400
We move all terms to the left:
16t^2-(400)=0
a = 16; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·16·(-400)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*16}=\frac{-160}{32} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*16}=\frac{160}{32} =5 $
| 6x-(3x-11)=36 | | −3x=45 | | 8.5c=6.2 | | 9x-6=9x−6=4x+19 | | 24-(6y+5y)=6 | | 18+32=x | | 2x+4=6x+40 | | 2/5b=17/8 | | 5-2x=3-2x=-2 | | 0.5x+10+1.5x=x+1 | | 0=w^2+1.5w-175 | | 3x+26=10-5x | | 199=-v+246 | | 7y+13=6y+7 | | 6n²=72n | | x+11=–12 | | 5x=4×+3 | | -x+154=278 | | n^2+8n-84=0 | | 8(h-1)=6h+4=2h | | 2(x+8)=6x+20 | | 161=4x+161 | | 170=50+40x | | 2y+5+2y=-5 | | 118=x | | -9/5x=-5 | | 3.1q-2.2-4.6q=0.5q-2.2 | | 19x=418 | | 5(9+x)=125 | | x*3=47 | | 6.7x+1=5.7 | | 180=68+44+58+73=x |