If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x-11=(10x-12)(5x+12)
We move all terms to the left:
16x-11-((10x-12)(5x+12))=0
We multiply parentheses ..
-((+50x^2+120x-60x-144))+16x-11=0
We calculate terms in parentheses: -((+50x^2+120x-60x-144)), so:We add all the numbers together, and all the variables
(+50x^2+120x-60x-144)
We get rid of parentheses
50x^2+120x-60x-144
We add all the numbers together, and all the variables
50x^2+60x-144
Back to the equation:
-(50x^2+60x-144)
16x-(50x^2+60x-144)-11=0
We get rid of parentheses
-50x^2+16x-60x+144-11=0
We add all the numbers together, and all the variables
-50x^2-44x+133=0
a = -50; b = -44; c = +133;
Δ = b2-4ac
Δ = -442-4·(-50)·133
Δ = 28536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28536}=\sqrt{4*7134}=\sqrt{4}*\sqrt{7134}=2\sqrt{7134}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-2\sqrt{7134}}{2*-50}=\frac{44-2\sqrt{7134}}{-100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+2\sqrt{7134}}{2*-50}=\frac{44+2\sqrt{7134}}{-100} $
| 10q-3=9q=5 | | y/3+2.2=-5.3 | | 1000(6x-10)=40(255+100x | | 3=g+3/2 | | x-2/5=25-1/250 | | 7p-2=6p=1 | | 4(w+3)=-2w-30 | | 9w+2-w+15-3w=3 | | 30-15=25-x | | 4(x-1)+2=2(x+2)+x | | -4x-7(4-6x)=276 | | 6x+11=149 | | −6r+1=7 | | -4(-6p+1)p=-179 | | 4x-11=x+4 | | (4-3x)+5(2x-3)=25-5x | | 19-k=68-8k | | 2-6x-8=-6x+-6 | | 0=1+4n+7 | | 5+7+t=20t= | | B=45.00-40x | | x=3(5)^2+4 | | 13=2m-6+5 | | 2=16/ss= | | n/7+9=7 | | 3-2y-3/3=3+y/2 | | 5=15-qq= | | 18=6+pp= | | -7x-10x= | | 9=n/3n= | | 18x+9x= | | 5x/2=7x+1/3 |