If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+14x-20=0
a = 16; b = 14; c = -20;
Δ = b2-4ac
Δ = 142-4·16·(-20)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{41}}{2*16}=\frac{-14-6\sqrt{41}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{41}}{2*16}=\frac{-14+6\sqrt{41}}{32} $
| 17x2+12x+15=0 | | 15x2-15x+14=0 | | 20x2-16x-14=0 | | 19x2+5x-1=0 | | 20x2+11x-17=0 | | 11x2+5x+5=0 | | (3x-15)(7x+21)=0 | | 10x2-15x-11=0 | | 5x2-3x-9=0 | | 17x2+19x-12=0 | | 20x2+x-11=0 | | 11x2+2x-8=0 | | x+50+10-x=90 | | 9.5x-0.05=10.5x+1.05 | | -x2+11x+480=0 | | 5x2+14x-2=0 | | 8x2+20x-8=0 | | 8x2+17x+8=0 | | 4x2-11x-12=0 | | (m+3)/8+(3m-1)/14=(2m-3)/7+(3m+1)/16 | | x+20135=10135 | | x/3-2(x-1)=5x/2-3 | | 5x/4-10x/3=15 | | -20x=-88 | | 16x2+19x-2=0 | | 15x2+13x-6=0 | | 5x2-7x-2=0 | | 11x2-19x+9=0 | | 3x2-18x+5=0 | | 6x2-18x+20=0 | | 17x2+12x+3=0 | | 3x2-17x-2=0 |