If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+19x-2=0
a = 16; b = 19; c = -2;
Δ = b2-4ac
Δ = 192-4·16·(-2)
Δ = 489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{489}}{2*16}=\frac{-19-\sqrt{489}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{489}}{2*16}=\frac{-19+\sqrt{489}}{32} $
| 15x2+13x-6=0 | | 5x2-7x-2=0 | | 11x2-19x+9=0 | | 3x2-18x+5=0 | | 6x2-18x+20=0 | | 17x2+12x+3=0 | | 3x2-17x-2=0 | | 15x2-11x-13=0 | | 14x2+x-9=0 | | 7x2+15x-7=0 | | 17x2-20x-16=0 | | 20x2+5x-10=0 | | 13x2+7x-9=0 | | 16x2+7x-2=0 | | 18x2-6x+9=0 | | 20x2-2x+1=0 | | 4x2-19x-11=0 | | 17x2-18x+12=0 | | x2+7x+17=0 | | 4x2+11x-5=0 | | 14x2-18x-14=0 | | 19x2+3x-9=0 | | 13x2+7x-19=0 | | 7x2+8x-14=0 | | (p+11)/7=4 | | 16x2-14x-9=0 | | 26-6y+5=23 | | 17x2-3x+3=0 | | 6x2-12x-8=0 | | 19x2+10x-4=0 | | 2x2+8x-13=0 | | 5=25/(1.08)^x |