If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+20x=0
a = 16; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·16·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*16}=\frac{-40}{32} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*16}=\frac{0}{32} =0 $
| 5x-4=-3x+28 | | 1.2b+2.6=10.1-1.36 | | 5w+20=5 | | .15y=12 | | 6k-65=1 | | 139=39+(n-1)1 | | 3x-1÷2-2x-10÷2=7x-5÷5+0,1 | | m/3+2=13 | | b–9=7 | | 3(2x–5)=–16 | | 72+2w=132 | | 10x-3(x-6)=x30 | | 9/12=f/4 | | 46=9x | | 5x^2+36x+30=0 | | 35=8b+3 | | 530=12+(n-1)7 | | 6.3434=x10^-8 | | 7-6x+18+8x-40=3^2-x | | 3.75+3/8x=131/4 | | 12x+x=x+x+x+20 | | 54x+2=90 | | 2/x−3/2=7/2x | | 1/3y+4=2/3 | | 1/3y+4=23 | | 13y+4=23 | | -7-4k=8-2k-8k | | k+13×3=37 | | k+13×3=57 | | 5x=136/3 | | 0=2n-120 | | 7-6x+9+8x-40=3^2-x |