If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+224x-1323=0
a = 16; b = 224; c = -1323;
Δ = b2-4ac
Δ = 2242-4·16·(-1323)
Δ = 134848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{134848}=\sqrt{3136*43}=\sqrt{3136}*\sqrt{43}=56\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(224)-56\sqrt{43}}{2*16}=\frac{-224-56\sqrt{43}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(224)+56\sqrt{43}}{2*16}=\frac{-224+56\sqrt{43}}{32} $
| 2x3-4x2-2x=0 | | k+39=34 | | 7a+3-5a=6 | | x^2+2x+36=44 | | -1/3b=-30 | | 1/2(11x-1)=3x+7 | | 1/3k=33 | | ½(11x-1)=3x+7 | | n+26=-49 | | y=500(1+0.08)6 | | 36=1/2b(6) | | 25.12=1/3(12.56*h | | 22=2x+2(4) | | 22=2x=2(4) | | 5.4+u÷3=-2.1 | | F(x)=-3.3×+1 | | 22=2l+2(4) | | 3(11r-13)=-7r+57=32r | | 3x+7=11x-1 | | 2x+7=5x+1= | | 7x-3=24+12x | | 7y+2y=7 | | 0.55(x-175)=1(x-100) | | 60=2(x-10) | | 30x-5=15 | | -4/3t-3/2=1/12t+11/6-19/12t | | Y=-2.2x+12.5 | | 6^4x=234 | | 9t-8=6t+4 | | 9t-8=6t-4 | | x/20=4/13 | | 4b+3=6b-9 |