If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+2x-6=0
a = 16; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·16·(-6)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{97}}{2*16}=\frac{-2-2\sqrt{97}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{97}}{2*16}=\frac{-2+2\sqrt{97}}{32} $
| 17x2+7x+9=0 | | 9x2-11x-17=0 | | 15x2-12x-10=0 | | 16x2-18x-2=0 | | 7x2-19x-1=0 | | 14x2-16x-5=0 | | 5x2-19x-7=0 | | 2x2+3x-13=0 | | 17x2-20x-10=0 | | 7x2-16x+10=0 | | 16x2+14x-20=0 | | 17x2+12x+15=0 | | 15x2-15x+14=0 | | 20x2-16x-14=0 | | 19x2+5x-1=0 | | 20x2+11x-17=0 | | 11x2+5x+5=0 | | (3x-15)(7x+21)=0 | | 10x2-15x-11=0 | | 5x2-3x-9=0 | | 17x2+19x-12=0 | | 20x2+x-11=0 | | 11x2+2x-8=0 | | x+50+10-x=90 | | 9.5x-0.05=10.5x+1.05 | | -x2+11x+480=0 | | 5x2+14x-2=0 | | 8x2+20x-8=0 | | 8x2+17x+8=0 | | 4x2-11x-12=0 | | (m+3)/8+(3m-1)/14=(2m-3)/7+(3m+1)/16 | | x+20135=10135 |