If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+56x+24=0
a = 16; b = 56; c = +24;
Δ = b2-4ac
Δ = 562-4·16·24
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-40}{2*16}=\frac{-96}{32} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+40}{2*16}=\frac{-16}{32} =-1/2 $
| m^2-8m+15=(m-5)(m-) | | x/2+6=-6 | | 165=108-y | | v^2+2v+1=(v+1)(v+) | | 9x+12=3x-15 | | 2w-46=-8(w+7) | | 16x−7−8x=8x−7 | | 7x=4x+3=8 | | 24=-6w+2(w-6) | | 24x-15=6x-6 | | 38=5w-17 | | p9=72 | | n/2+60=200 | | d^2+11d+30=(d+5)(d+) | | 3w-10=23 | | x8+x=716x8+x=716 | | 20x=10x+(-8) | | 3=3(y+3)-5y | | n(3n-1)+4n=26 | | 10x+8=7x-2 | | 10^5x=71 | | t^2+9t+14=(t+2)(t+) | | 4x=5x=9 | | 4x+8=68−2x | | 75=5(m=74) | | 3n^{2}+11n-14=0 | | n^2+9n+18=(n+3)(n+) | | 7x-2+20x-6+18x+9=271 | | 200=2x60 | | 3t+2/2t-7=0 | | 3x+9=-28 | | 4(x-12)=98 |