If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+8x-98=0
a = 16; b = 8; c = -98;
Δ = b2-4ac
Δ = 82-4·16·(-98)
Δ = 6336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6336}=\sqrt{576*11}=\sqrt{576}*\sqrt{11}=24\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24\sqrt{11}}{2*16}=\frac{-8-24\sqrt{11}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24\sqrt{11}}{2*16}=\frac{-8+24\sqrt{11}}{32} $
| 6(2x-1)-8=5(1+2x)-9 | | 16x^2+8x-98=0 | | 8(2-3x)-11=7(3x-2)+10 | | x2^2-20x-10=0 | | 7.8+2(0.75m+0.4)=6.4m+4(0.5m+0.8) | | 4(3x-1)+11=2(3x-1)-9 | | 41*31,641+-1,536y=1297.308 | | 1000*y=9.0678 | | 4(x-6)+2x=9x-2(4+2x) | | 10^5x-1=0.001 | | 36.y=14.76 | | 3(2x+6)-4x=3(5x-2) | | x+x/4=5 | | 7/3x=-6 | | x*0.9=100 | | x*0.9=20 | | 2^3n/8+1+3×2^n/2+3×2^2n/4=4913 | | -450+3p=1200-3p | | 4^x=2^x+8 | | -450+3p=1050-3p | | x/29=13 | | 3.7x-18=4.3x34 | | x/45=99 | | 20+12k+k^2=0 | | 10x+7=2x+12 | | 25=20/x | | 3x-5+8x+2=11x-3 | | 5p+76=3 | | 7x-1^2(8x+4)=6 | | 2z-3=3z | | x^2=-x(x-4) | | 4b/5+7=15 |