If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-13=36
We move all terms to the left:
16x^2-13-(36)=0
We add all the numbers together, and all the variables
16x^2-49=0
a = 16; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·16·(-49)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*16}=\frac{-56}{32} =-1+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*16}=\frac{56}{32} =1+3/4 $
| 5=Xx25 | | 40=k/5 | | 10x9=7x+12 | | k5=3;k | | 8=8j | | x-1.38=7.28 | | –2(–9t−10)=–10+8t | | x/9.44=10 | | 11x-6=45 | | –4(–8+6q)= | | –5b–19=16 | | 5x^2+24=54 | | 2p+5.8=8.58 | | 3r+–1=–7 | | 87–9x=3x | | x+13≥=0 | | 4=g-14 | | –10−7n=3n+10 | | f-12.1=7.2 | | 0.60*x=12 | | 180(x-2)=720 | | 7200+450x=900 | | 6x+1=3x+19=6 | | 17=s+6 | | 2(x+2)^2=50 | | –4=s+1 | | 4x+6=180=11x-6 | | 13k=65 | | 5x-4=8+8 | | 1/2(x+3)^2=32 | | f+5=11.7 | | 2x^+3=27 |