If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-16x+3=0
a = 16; b = -16; c = +3;
Δ = b2-4ac
Δ = -162-4·16·3
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8}{2*16}=\frac{8}{32} =1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8}{2*16}=\frac{24}{32} =3/4 $
| -13=(5x-1)-11x | | 2−y=1 | | −12x+4=-16−7x | | 8-20x=-2 | | 17x-(360-x)=150 | | 2−y/5=1 | | f(4)=-2(4)-2 | | f(1)=-2(1)-2 | | 2−y5=1 | | f(0)=-2(0)-2 | | f(-5)=-2(-5)-2 | | (360-x)-125=6x-11 | | 6^(x+2)=84 | | -8x+3=-6x+1 | | g(-2)=4(-2)-2 | | -3(-2n+4)=18 | | g(-5)=4(-5)-2 | | -3(2w-4)=60 | | -8+3=-6x+11 | | 2w-2+2(2w+5)=-2(w+1) | | x − 2 = 4 | | (x+70)-(x+30)=(x/2) | | 14x+18x-8+3=-3x+3-8 | | -4(5b+3)=48 | | 149.65=x+18.5+18.5+2.9+167.5/2 | | 12q+6=3q | | 4(v-3)-6v=16 | | 12-4y=2(y+9 | | 13d=196 | | 7x+2=12x+4 | | 2•-3+6y=12 | | 9z+22=6 |