If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-16x=0
a = 16; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·16·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*16}=\frac{0}{32} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*16}=\frac{32}{32} =1 $
| 5x=3x+30=2x+10 | | -35x-40=-3x+40 | | 8+2*(x-3)=2*(4x-3)-1 | | (X)(x)(x)=504 | | 6(8-x)=-18 | | 3/4(2x-1)-5=2/3(x+1) | | 3/4(2x-1)-5=2/3(x | | x=2x+4x= | | 1/4p=18 | | x4+4x2-21=0 | | |1-3x|=|3-2x| | | 3q=12-4 | | x÷4-8=1 | | x²+x=21 | | n²+n=20 | | 3x^2-4.5x-3=0 | | 15-6x/2x-5=4x-10 | | 9x+1+8.3x-1=0 | | 6w^2+5w-1=0 | | (x+1)(x+6)=14 | | 5(x-5)=4(x+20) | | 2^x+2^(x+3)=72 | | 22=7s+8 | | 374=6m+26 | | 2(x-4)-(x+2)=x-5(x-2) | | 26+×=35-y | | 3e-12=2e-3 | | 368.62=190+0.78x | | 4(2n+4)=6(9n+9)+7 | | 8x-1=9x+0.75 | | (X+3)(-x+5)=0 | | 14v+6=2(5 |