If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-4x=0
a = 16; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·16·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*16}=\frac{0}{32} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*16}=\frac{8}{32} =1/4 $
| -7+4+5x=2 | | -4f-8=-4f+2 | | 13+3k=1-5k+6k | | 13+3k=1-5k+6k | | 3x–8=4x-4 | | 13+3k=-5k+6k | | -4+5x+6x=-4 | | 0=-5x+6x+10 | | -14-5k=k+4 | | 2x+5+5x=-79 | | |3x-1|=|2x+6| | | 4+16=-2(3x-10) | | 2|x−7|=x−8 | | 9g^2+48g+64=0 | | 9g2+48g+64=0 | | -y/2+3=y/4-5 | | -5(6y-5)-y=-2(y-4) | | 89=5x+5x-1 | | x/30=10/100 | | -5+4=2x+16 | | 7|8-3h|=21h-49 | | 3x-3=15x | | 78-3h=21h-49 | | 7x+9x-4x=7+2x+10 | | 3=-2t+11+3t | | -9w−7=-10w | | 9−8g=-9+2−10g | | 20+m=-3 | | x-5=2x-90 | | -8+2y=5y+10 | | -7z=6−9z | | -3−2c=-3c |