16x2-6x2+3=75-3+2x2

Simple and best practice solution for 16x2-6x2+3=75-3+2x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16x2-6x2+3=75-3+2x2 equation:



16x^2-6x^2+3=75-3+2x^2
We move all terms to the left:
16x^2-6x^2+3-(75-3+2x^2)=0
We add all the numbers together, and all the variables
10x^2-(75-3+2x^2)+3=0
We get rid of parentheses
10x^2-2x^2-75+3+3=0
We add all the numbers together, and all the variables
8x^2-69=0
a = 8; b = 0; c = -69;
Δ = b2-4ac
Δ = 02-4·8·(-69)
Δ = 2208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2208}=\sqrt{16*138}=\sqrt{16}*\sqrt{138}=4\sqrt{138}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{138}}{2*8}=\frac{0-4\sqrt{138}}{16} =-\frac{4\sqrt{138}}{16} =-\frac{\sqrt{138}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{138}}{2*8}=\frac{0+4\sqrt{138}}{16} =\frac{4\sqrt{138}}{16} =\frac{\sqrt{138}}{4} $

See similar equations:

| 1/3c+2=7,c= | | 16.8-x=4x | | -5p-8p=-39 | | -9(x-1)-4x+6=5x+87 | | 78=(-9x)-3(-56+12x) | | 18=2b-76 | | 7.5=u/1.5 | | 2w-27=w | | 14=3t+1 | | (4w-7)(1+w)=0 | | 1/v-5=-6 | | 1030=2(l+195) | | y/9-10=-12 | | 5u-62=3 | | 78=2(23+w) | | 4-4x=x+1.75 | | 5+5+5=-2-2x-x | | h+34=2000 | | 274=2(l+82) | | 3x+5=7x+7 | | 5•6+8y=14 | | 11=p+6;p=5 | | 6×k=42 | | 1.5/u=7.2 | | 146=2(45+w) | | y=4-2-5 | | 4-(2x+5)=(-2x-1) | | 4p+4/2p-3=10 | | 26=y-9;y=35 | | y=4-0-5 | | k-3|4=10 | | 3x-9=(x-1) |

Equations solver categories