If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-96x+137=0
a = 16; b = -96; c = +137;
Δ = b2-4ac
Δ = -962-4·16·137
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-8\sqrt{7}}{2*16}=\frac{96-8\sqrt{7}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+8\sqrt{7}}{2*16}=\frac{96+8\sqrt{7}}{32} $
| 9(d+8)=9 | | O+98÷y=79 | | 8(2l+1)=56 | | 36*w=4936 | | -16=8+3(z+4) | | 185*71=y | | q=100+4q+q^2 | | 3x²-26x+8=0 | | 7*m=3262 | | 0=x^2+2x+64 | | 18+p=56 | | 8+9(1+7d)=-23 | | (4x-32)=(3x+10) | | -10=0+5y | | (y-3)^2+(y-6)(y+5)=9 | | 8s(5s+6)=1/2(20+6s | | 8/6x+12=-11/7x-10 | | 2/7x+3=9/2x-5 | | y+3/5=11/10 | | 2x-9/3x-2=-3 | | 3x+6/4x+8=7 | | x=2/x+3=4 | | 12-3y=8 | | 1/295x=7)=3/4(3x-10 | | 3(2+5x)/4=2(6x-3)=5 | | 30y^2+50y=0 | | x-4x1=-4 | | 3a-7=-2a+5 | | 3a-7=2a+5 | | 10-6(8x-20)=9x-(3+4x) | | q-7*3=30 | | -6(3-4x)=8(X+11) |