If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 16y(y + -4) + 6y = 20y + -1(50) Reorder the terms: 16y(-4 + y) + 6y = 20y + -1(50) (-4 * 16y + y * 16y) + 6y = 20y + -1(50) (-64y + 16y2) + 6y = 20y + -1(50) Reorder the terms: -64y + 6y + 16y2 = 20y + -1(50) Combine like terms: -64y + 6y = -58y -58y + 16y2 = 20y + -1(50) Multiply -1 * 50 -58y + 16y2 = 20y + -50 Reorder the terms: -58y + 16y2 = -50 + 20y Solving -58y + 16y2 = -50 + 20y Solving for variable 'y'. Reorder the terms: 50 + -58y + -20y + 16y2 = -50 + 20y + 50 + -20y Combine like terms: -58y + -20y = -78y 50 + -78y + 16y2 = -50 + 20y + 50 + -20y Reorder the terms: 50 + -78y + 16y2 = -50 + 50 + 20y + -20y Combine like terms: -50 + 50 = 0 50 + -78y + 16y2 = 0 + 20y + -20y 50 + -78y + 16y2 = 20y + -20y Combine like terms: 20y + -20y = 0 50 + -78y + 16y2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(25 + -39y + 8y2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(25 + -39y + 8y2)' equal to zero and attempt to solve: Simplifying 25 + -39y + 8y2 = 0 Solving 25 + -39y + 8y2 = 0 Begin completing the square. Divide all terms by 8 the coefficient of the squared term: Divide each side by '8'. 3.125 + -4.875y + y2 = 0 Move the constant term to the right: Add '-3.125' to each side of the equation. 3.125 + -4.875y + -3.125 + y2 = 0 + -3.125 Reorder the terms: 3.125 + -3.125 + -4.875y + y2 = 0 + -3.125 Combine like terms: 3.125 + -3.125 = 0.000 0.000 + -4.875y + y2 = 0 + -3.125 -4.875y + y2 = 0 + -3.125 Combine like terms: 0 + -3.125 = -3.125 -4.875y + y2 = -3.125 The y term is -4.875y. Take half its coefficient (-2.4375). Square it (5.94140625) and add it to both sides. Add '5.94140625' to each side of the equation. -4.875y + 5.94140625 + y2 = -3.125 + 5.94140625 Reorder the terms: 5.94140625 + -4.875y + y2 = -3.125 + 5.94140625 Combine like terms: -3.125 + 5.94140625 = 2.81640625 5.94140625 + -4.875y + y2 = 2.81640625 Factor a perfect square on the left side: (y + -2.4375)(y + -2.4375) = 2.81640625 Calculate the square root of the right side: 1.678215198 Break this problem into two subproblems by setting (y + -2.4375) equal to 1.678215198 and -1.678215198.Subproblem 1
y + -2.4375 = 1.678215198 Simplifying y + -2.4375 = 1.678215198 Reorder the terms: -2.4375 + y = 1.678215198 Solving -2.4375 + y = 1.678215198 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '2.4375' to each side of the equation. -2.4375 + 2.4375 + y = 1.678215198 + 2.4375 Combine like terms: -2.4375 + 2.4375 = 0.0000 0.0000 + y = 1.678215198 + 2.4375 y = 1.678215198 + 2.4375 Combine like terms: 1.678215198 + 2.4375 = 4.115715198 y = 4.115715198 Simplifying y = 4.115715198Subproblem 2
y + -2.4375 = -1.678215198 Simplifying y + -2.4375 = -1.678215198 Reorder the terms: -2.4375 + y = -1.678215198 Solving -2.4375 + y = -1.678215198 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '2.4375' to each side of the equation. -2.4375 + 2.4375 + y = -1.678215198 + 2.4375 Combine like terms: -2.4375 + 2.4375 = 0.0000 0.0000 + y = -1.678215198 + 2.4375 y = -1.678215198 + 2.4375 Combine like terms: -1.678215198 + 2.4375 = 0.759284802 y = 0.759284802 Simplifying y = 0.759284802Solution
The solution to the problem is based on the solutions from the subproblems. y = {4.115715198, 0.759284802}Solution
y = {4.115715198, 0.759284802}
| z^2=0 | | 3x^3-x^2y+3xy^2+y^3= | | 6.5*0.04= | | (3x-14)+(2x+9)=180 | | 1.3=x+2.1 | | 12r+9=60 | | 5y=25x+40 | | 2a^2-6a-8=f(x) | | l^2+5l=176 | | 3w-15w=0 | | 14x+14=17+3x | | 3.6x+48.8=6.4-7.0x | | 0.6*0.91= | | 2(x+2)=x-18 | | 12d+6=d | | -x^2+16x-28=0 | | 8/x=15 | | 3/4x3/4x3/4 | | 25x^2-10x+1=27 | | x^2-13x=40 | | 36x^2+288x=949 | | 10x+12y=1120 | | 16(x-8)=-4(x+44) | | 10r+5=63 | | -41+41=-20p-15p | | 36x^2-25y^2+288x-250y-949=0 | | 1/7B=-7 | | 2a^3-6a^2+8a= | | 1/4r-(-1/2r)=-9 | | 6=x-2x+6 | | -16=0.5x-0.7x | | 3(u-3)+u=8+u |