If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y+3y^2=35
We move all terms to the left:
16y+3y^2-(35)=0
a = 3; b = 16; c = -35;
Δ = b2-4ac
Δ = 162-4·3·(-35)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-26}{2*3}=\frac{-42}{6} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+26}{2*3}=\frac{10}{6} =1+2/3 $
| (x-8)(x+2)=24 | | -2|7-3x|-6=-14 | | X=5(180-x) | | 2x(x-2)=9x^2-8x | | (X)-(x/5)=144 | | Y-x/4=5 | | -9+x=28 | | 7(x-3)+13=27 | | 3x+1/2x+3=18 | | x(x2-4)=0 | | P=2.5m= | | 4/3x-10=5 | | 8x4-x-15=0 | | m-(-13)/2.5=-8.75 | | 7=x-(x*0.2) | | R+7.5=6r+3 | | 4y+34=6(y+7) | | 9x-5-3x=49 | | 1/2k-(k+1/3)=1/6(k+3) | | 3x+20=2x+36 | | 12x+5-3x=41 | | 9/5x+32=-109.3 | | 4÷2x+1-3x÷1=5 | | 9x-7=(1)/(2)(17x-2) | | -a(-2)-(3a+4)=-2a | | -3x-11=3-x | | -a(-2)-3a+4=2a | | -6u+4(u-3)=-30 | | Y=1-x;(2,1) | | 3x²-27=0 | | -3x-6=6+x | | -4/x-6=-8 |