If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+18y=0
a = 16; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·16·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*16}=\frac{-36}{32} =-1+1/8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*16}=\frac{0}{32} =0 $
| 2/3b+5=20- | | 5x^2+10x-36x=+36 | | -7x+9=21 | | 180=70+21x+5 | | 12x+14-8x=94 | | 180=10x+11x+12 | | 3n-0.35=$3.45 | | X/15=6/9x= | | -3(5x-10)x=-66 | | 3n-0.35=3.45 | | 11x+12=180+10x | | (2(x+6))/4=4x-2 | | T(n)=2.5n-10 | | 11x+10x=12 | | 3(u-7)-6u=-24 | | 10x=11x+12 | | 5x-4=+2x | | 11x+12=10x+180 | | 1.8(10-1)=h | | (6y+4)(3y-5)=0 | | -85=5(k+-4) | | 5+3x-1=9x+18-4x | | x+79+x=90 | | (6y+4)(3y–5)=0 | | (6÷6)•2.4=w | | (6÷6)×2.4=w | | 5(x+2)/6=3x-5 | | 5x+2+2x-9+92=180 | | 5x+2+2x-9=92 | | 180=9x-5+85 | | 3x-13+2x+4+116=360 | | 0.6(x+40)+1.2x=105 |