If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+20y=0
a = 16; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·16·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*16}=\frac{-40}{32} =-1+1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*16}=\frac{0}{32} =0 $
| -3y+10=26 | | 3-6(4c-9)=4c-3 | | -6(x-3)+2=-4(x-5) | | 5^x=25x | | 6(x-5)-4=32x-112 | | -2(x+3)+52=21+19 | | X2+8x-80=0 | | 8^(-7x)=9 | | -32=2(x+9) | | 2.7x-0.82=x-2.52 | | 8+4=9-9(x+4)+8x | | 3+9x=8x+7 | | 1-5(n-10)=12(n-4)-8n | | 2x+10=50/3 | | 2x+9=10;x= | | -6m+8=10 | | 2x•x=18 | | 1.12x=6272 | | 5(3x-2)^2+8=43 | | -9/4=x/8 | | 1.4x^2=315 | | 5x+-x-8=12 | | 3+x+13=-(x+2) | | 1-5x+7=8x-5 | | -3m=m2 | | 18(x+8)+3-17x=15 | | 6p-3-5p=-10-8 | | -3.3+7x=3.7 | | ½(x+4)=123 | | ½(x+4)=12 | | 4x=15.1 | | 4x-0.9=15.1 |