If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+24y=9
We move all terms to the left:
16y^2+24y-(9)=0
a = 16; b = 24; c = -9;
Δ = b2-4ac
Δ = 242-4·16·(-9)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24\sqrt{2}}{2*16}=\frac{-24-24\sqrt{2}}{32} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24\sqrt{2}}{2*16}=\frac{-24+24\sqrt{2}}{32} $
| -x+28=14 | | 17x−14x−2x+4x+3x=8 | | 7(z-4)=4z+2 | | 15x+1=4x-10 | | 9x-3x=4+2 | | 10x+6-4=8x-2 | | 6x+3-5=-3x+2 | | –24=2(c–6) | | 6(-(2/3)+-1(1/3)y)+6y=-6 | | 3x+200=3000 | | 5/12+24=x | | u4+20=22 | | (3n+5)=180 | | 2d-8=3d-7 | | 4+2a–5+3(a^2+2)=0 | | (z-12)/8=5 | | 5a-28=32 | | (b+7)/3=-9 | | (x-3)/6=5 | | 0=21c | | x/(-5)-12=8 | | -10/9+r=-7/18 | | 9^3x=27^4x+2 | | -10/9+r=-7/8 | | 8w=80;30 | | 60+65+120+100+2x+x=720 | | -9d+72=15d | | 5b-20=-5b | | -2=-2(7-2n) | | -5=3w | | 7(=k+2) | | 3n-5=-30 |