If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2=81.
We move all terms to the left:
16y^2-(81.)=0
We add all the numbers together, and all the variables
16y^2-81=0
a = 16; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·16·(-81)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*16}=\frac{-72}{32} =-2+1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*16}=\frac{72}{32} =2+1/4 $
| 252=-6(8a-2) | | -1=-14m | | 1/x=100 | | 0.4(r-0.5)=0.2(r+3 | | 0.1x+1.2=4.8 | | 4x–12=–4 | | -r/4+3=-10.5 | | 1/2x+54=1/2x-76 | | 20s+2+15=17 | | 100+(i+34)=(34+100)+23 | | 2x-9=2x- | | 20r+12=18r+20 | | 5(v+6)=-4(3v-4)+9v | | 3v-15=7(v-1) | | 2(v-3)=6v+34 | | 8(7h+1)=440 | | -2x-4(-x-8)=46 | | 6c^2+4c-13=6c | | 1/12p=4 | | 2(8x-8)=-144 | | X+4=5x-28 | | x+13+x+15=18 | | 4x+4(5x+13)=-164 | | 5−1a=6−a | | 20−4a=6−a | | 15+8z=-7 | | 4x-4(-2x-12)=108 | | h−–38=84 | | x+2+3x+4=9 | | 9x6.4=57.6 | | 8x6.4=57.6 | | d+2/6=10 |