16z2+62=64z

Simple and best practice solution for 16z2+62=64z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16z2+62=64z equation:



16z^2+62=64z
We move all terms to the left:
16z^2+62-(64z)=0
a = 16; b = -64; c = +62;
Δ = b2-4ac
Δ = -642-4·16·62
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-8\sqrt{2}}{2*16}=\frac{64-8\sqrt{2}}{32} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+8\sqrt{2}}{2*16}=\frac{64+8\sqrt{2}}{32} $

See similar equations:

| -r/4=-3π | | x^2−56=140 | | 32=5-(3t) | | -14=-3v | | 48828x-2848=4882938x+388928 | | 12x^2+6x=5 | | −12x^2=−1200 | | 6+(2x-10)=4 | | 4x^2+12=3x^+12 | | 4x+6-2x=2(x+3 | | 7(4x+2)=9(3x-7)+60 | | X2-21x+98=0 | | -x^2+10x-2=0 | | 3+b=-13-9 | | x^=0 | | -6w=23 | | 18x+9=5.7x-6 | | 2x+1+3x=1+4x-6 | | 3x/7-4x/11=-1(4-x)/5x/14-7x | | 8(x-3)+7=2x(4-17) | | 165=77-u | | -v+162=42 | | 3x-7=4x+11=-1(4-x)/5x/14-7x | | 235=-w+95 | | 3x+5(2x+1)=3+4x+2 | | y+(y0,36)=204000 | | 3(1-y)^2+5(1-y)=-2 | | x-3/3x+3=1/8 | | 3x+2+x-5+2x-5=200 | | F(8)=2x-8 | | y+(y*0,36)(0,33)=204000 | | 4x=12x+12 |

Equations solver categories