If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17(2-x)/1-7x+5(x+12)/7x-1=8
We move all terms to the left:
17(2-x)/1-7x+5(x+12)/7x-1-(8)=0
Domain of the equation: 7x!=0We add all the numbers together, and all the variables
x!=0/7
x!=0
x∈R
17(-1x+2)/1-7x+5(x+12)/7x-1-8=0
We add all the numbers together, and all the variables
-7x+17(-1x+2)/1+5(x+12)/7x-9=0
We calculate fractions
(-119x^2+238x)/7x-7x+(5x+60)/7x-9=0
We multiply all the terms by the denominator
(-119x^2+238x)-7x*7x+(5x+60)-9*7x=0
Wy multiply elements
(-119x^2+238x)-49x^2+(5x+60)-63x=0
We get rid of parentheses
-119x^2-49x^2+238x+5x-63x+60=0
We add all the numbers together, and all the variables
-168x^2+180x+60=0
a = -168; b = 180; c = +60;
Δ = b2-4ac
Δ = 1802-4·(-168)·60
Δ = 72720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72720}=\sqrt{144*505}=\sqrt{144}*\sqrt{505}=12\sqrt{505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-12\sqrt{505}}{2*-168}=\frac{-180-12\sqrt{505}}{-336} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+12\sqrt{505}}{2*-168}=\frac{-180+12\sqrt{505}}{-336} $
| 4x-8=-3x+8 | | f(6)=7⋅6+6 | | (3-x)/(2x+5)=x/3 | | 3.9(9r=7)=78.7 | | 5(y-3)-9=-3(-8y+2)-5y | | 2(y-5)=2y+3-2(-5y-1) | | -6=14-4x | | 3x120=2x-60 | | -3(5y-4)+8y=7(y+2) | | 3x-2x=120-60 | | 2y-3+2(3y+2)=-6(y+1) | | 7(u-2)-3=-3(-8u+4)-2u | | x+2=6–x | | 3x2+15x-2=2(x2+5x+1)^1/2 | | 1/5m-4=2m+3 | | 8x-2=12x | | 9(x-4)-4(x+9)x=4 | | 12+m=3m+6-m | | 3x-5/4-x=2/5 | | x/3-17=28 | | 3x(x^2-1)2(-x^2+1)=0 | | 3x(x^2-x)2(-x^2+1)=0 | | 3x(x^2-x)+2(-x^2+1)=0 | | (34000+130x)/x=200 | | 62x+72(40-x)=68×40 | | 9x+160=300 | | 1m=17÷5-7 | | x-(3x/4+(5/4))=3x-(1/2) | | x-(3x/4+5/4)=3x-(1/2) | | 3^x+2=150 | | 8x-1(3x+10)=15 | | x-(3x+5/4)=3x-(1/2) |